monthly water situation report

South East Region, West Thames Area

Abstract

Summary - February 2012 February was another dry month with below average rainfall for West Thames Area. Rainfall has been below average in 12 of the 17 months since October 2012, resulting in the second driest corresponding October to February period since records began in 1920. Mean February river flows were exceptionally or notably low for the time of year at 14 of our 15 indicator sites and groundwater levels at the end of February were notably or exceptionally low at 9 of our 11 indicator sites. On the 20th February the south east of England officially moved into drought status.

Rainfall

February was another dry month with 42% of the long-term average monthly rainfall. About half of this fell as snow on the 4th which melted gradually over three days. The five months from October to February had two-thirds of their usual rainfall making this the second consecutive winter with below average rainfall. The 17 months since October 2010 have been the second driest corresponding period for West Thames Area since records began in 1920; only 1922 was drier. On the 20th February the south east of England officially moved into drought status.

Soil Moisture Deficit/Recharge

Significant soil moisture deficits remained in the Berkshire Downs, Chilterns, Ock and Thame catchments at the end of February. This is very unusual for the time of year, when winter rainfall has usually wetted up the soil, allowing groundwater recharge. The dry soils mean that effective rainfall from October to February was just 17% of the long term average for this period. This is compounding the effects of last winter, when the six months from October to March saw only 51% of the usual winter recharge.

River Flows

Mean monthly river flows in February were notably low at seven of our indicator sites, exceptionally low at another seven and below normal at one, the River Wye. On most rivers, status deteriorated from January to February, most notably on the River Wey and the River Loddon, where flows had previously been sustained by slightly higher rainfall and groundwater levels. The lowest mean February flow since 1976 was recorded on two groundwater-fed rivers the River Coln at Bibury and the River Kennet at Theale - and on two rivers dependent on regular rainfall - the River Cherwell at Banbury and the River Evenlode at Cassington.

Groundwater Levels

Groundwater levels in the Chalk at the end of February were notably low at three sites (Rockley, Gibbet Cottages and Tile Barn Farm) and exceptionally low at Stonor Park where the level was below the current detection limit. In the Oolitic limestone of the Cotswolds, the groundwater level was below normal at Ampney Crucis and exceptionally low at Jackaments Bottom and Fringford.

Environmental Impact

There were 23 flow constraints on abstraction licences in force at the end of February.
Author: Catherine Sefton Contact details: 01491828424

Water Resources Situation (1)

Rainfall

February rainfall totals as a percentage of the 1961-90 February Long term Average (LTA). Data based on the Thames Soil Moisture Model, except for the Enborne and the Cut, which use NCIC (National Climate Information Centre) data (Source: Met Office © Crown Copyright).

Water Resources Situation (2)

River flow and groundwater level

Scale 1:650,000

Monthly mean river flow for February 2012, expressed as a percentage of the February long term average and classed relative to analysis of historic February monthly means (Source: Environment Agency). Groundwater levels at the end of February classed relative to an analysis of historic February groundwater levels (Source: Environment Agency). Geological map reproduced with kind permission from the UK Groundwater Forum, BGS © NERC.

Crown copyright. All rights reserved. Environment Agency, 100026380, 2012

Rainfall, effective rainfall and river flow (1)

Cotswold West and River Coln

Cotswolds West - Effective Rainfall

RIVER COLN AT BIBURY

Rainfall and effective rainfall plots
Monthly total rainfall (mm)

River flow plots

Exceptionally high
Below normal

Notably high
Notably low

Cotswold East and River Evenlode

Cotswolds East - Rainfall

Cotswolds East - Effective Rainfall

RIVER EVENLODE AT CASSINGTON

Upper Thames catchment and upper River Thames

Cherwell catchment and River Cherwell

Upper Cherwell - Effective Rainfall

RIVER CHERWELL AT BANBURY

Upper Cherwell - Rainfall
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

Upper Thames - Effective Rainfall

RIVER THAMES AT EYNSHAM (Naturalised)

Rainfall and effective rainfall plots

River flow plots

Exceptionally high
Below normal

Notably high
Notably low
\square Long-term average rainfall (mm)

Above normal Exceptionally low

Normal
—— Latest data

Rainfall, effective rainfall and river flow (3)

Thame catchment and River Thame
Ock catchment and River Ock

Rainfall and effective rainfall plots
\square Monthly total rainfall (mm)

River flow plots

Exceptionally high
Below normal

Notably high
Notably low
\square Long-term average rainfall (mm)
Above normal Exceptionally low

Normal

- Latest data

Rainfall, effective rainfall and river flow (4)

Berkshire Downs and River Kennet

Berkshire Downs - Effective Rainfall

Chilterns West and River Wye

Chilterns West - Effective Rainfall

RIVER WYE AT BOURNE END (HEDSOR)

Rainfall and effective rainfall plots

Monthly total rainfall (mm)

River flow plots

| Exceptionally high | Notably high |
| :--- | :--- | :--- |
| Below normal | Notably low |

\square Long-term average rainfall (mm)
Above normal Exceptionally low

Normal

- Latest data

Rainfall, effective rainfall and river flow (5)

Loddon catchment and River Loddon

North Downs (Hampshire) and Blackwater

Rainfall and effective rainfall plots

River flow plots

Exceptionally high
Below normal
Notably high
Notably low
\square Long-term average rainfall (mm)

Above normal Exceptionally low

Normal

- Latest data

Rainfall, effective rainfall and river flow (6)

Wey (Greensand) and upper River Wey

Lower Wey catchment and
Iower River Wey

Rainfall and effective rainfall plots Monthly total rainfall (mm)

River flow plots

Exceptionally high
Below normal
Notably high
Notably low
\square Long-term average rainfall (mm)

Above normal Exceptionally low

Normal

- Latest data

River Thames

River flow plots

Exceptionally high	Notably high	Above normal	Normal
Below normal	Notably low	Exceptionally low	- Latest data

Summary of rainfall, effective rainfall and soil moisture deficit

Rainfall and effective rainfall

Area	Rainfall (mm)	LTA rainfall (mm)	$\%$ of LTA	Effective rainfall (mm)	LTA effective rainfall (mm)	$\%$ of LTA
Cotswolds West	28	55	52	19	42	45
Cotswolds East	22	47	46	9	36	25
Berkshire Downs	16	52	31	2	39	5
Chilterns West	19	45	43	2	36	6
Upper Thames	16	47	35	7	35	20
Cherwell	21	44	49	3	35	9
Ock	19	41	46	0	30	0
Thame	19	40	49	0	29	0
North Downs (Hampshire)	19	57	33	10	51	20
Wey (Greensand)	19	56	34	10	43	23
Loddon	19	45	43	11	32	34
Lower Wey	20	42	48	12	32	38
West Thames Area	20	48	42	7	$\mathbf{3 7}$	$\mathbf{1 9}$

This is a first estimate of areal rainfall, effective rainfall and soil moisture deficit for key catchments. There may be significant variation within each area. Climate data is from the Thames Soil Moisture Model, NCIC and MORECS. Effective rainfall and SMD figures are not available for all catchments

Soil moisture deficit

Area	End of month SMD (mm)	End of month SMD LTA (mm)
Cotswolds West	5	3
Cotswolds East	6	3
Berkshire Downs	21	3
Chilterns West	20	2
Upper Thames	6	4
Cherwell	3	2
Ock	32	4
Thame	18	2
North Downs (Hampshire)	4	2
Wey (Greensand)	5	3
Loddon	6	3
Lower Wey	6	3
West Thames Area	$\mathbf{1 1}$	$\mathbf{3}$

Winter rainfall and effective rainfall

Winter totals for the period 1 October 2011 to the 29 February 2012						
Area	Rainfall (mm)	LTA rainfall (mm)	$\begin{gathered} \% \\ \text { Of } \\ \text { LTA } \end{gathered}$	Effective rainfall (mm)	LTA effective rainfall (mm)	$\begin{gathered} \text { \% } \\ \text { Of } \\ \text { LTA } \end{gathered}$
Cotswolds West	254	344	74	82	255	32
Cotswolds East	203	297	68	34	206	17
Berkshire Downs	196	342	57	26	217	12
Chilterns West	205	311	66	27	207	13
Upper Thames	209	305	69	9	178	5
Cherwell	185	280	66	3	184	2
Ock	186	276	67	0	137	0
Thame	182	271	67	0	153	0
North Downs (Hampshire)	255	394	65	106	319	33
Wey (Greensand)	265	389	68	89	256	35
Loddon	216	312	69	26	183	14
Lower Wey	207	302	69	26	181	14
West Thames average	214	319	67	36	206	17

Groundwater Levels

FRINGFORD - GREAT OOLITE

MODEL FARM - UPPER GREENSAND

FLASHES - LOWER GREENSAND (FOLKESTONE)
Ranking derived from data for the period Apr-1993 to Sep-2007

FRITH COTTAGE - LOWER GREENSAND (HYTHE) Ranking derived from data for the period Jul-1970 to Nov-2007

Exceptionally high	Notably high
Below normal	Notably low

Above normal Exceptionally low

Environmental Impact

End of month flow constraints

Scale 1:750,000

Summary of flow constraints

Week ending	Flow constraint situation
5 February 2012	Coln at Bibury, Thames Water Utilities (2)
	Ray at Islip, RSPB
	Ray at Islip, Topbreed Ltd
	Ock at Abingdon, Frilford Heath Golf Club Ltd
	Thame at Wheatley, The Woodperry Trust
	Dun at Hungerford, The Country Food and Dining Company Ltd
	Lambourn at Shaw, Kingwood House Stables
	Lambourn at Shaw, West Berkshire Golf Club
	Thames at Kingston, Clean Linen Services Ltd
	Thames at Kingston, Farm Partnership
	Thames at Kingston, Moreton C Cullimore (Gravels) Ltd
	Thames at Kingston, Air Products Chemicals (Teeside) Ltd
	Wey at Weybridge, Milford Golf Club
	Thames at Kingston, Burhill Estates Co Ltd
	Thames at Kingston, Worplesdon Golf Club
	Thames at Kingston, Berkshire Golf Club Ltd
	Thames at Kingston, Hall Hunter Partnership
	Groundwater level at Hambledon, West Surrey Golf Club Co Ltd
12 February 2012	Coln at Bibury, Thames Water Utilities (2)
	Ray at Islip, RSPB
	Ray at Islip, Topbreed Ltd
	Thame at Wheatley, The Woodperry Trust
	Ewelme Stream and Ewelme, M.C. Edwards
	Dun at Hungerford, The Country Food and Dining Company Ltd
	Lambourn at Shaw, Sandtrend Ltd
	Lambourn at Shaw, Kingwood House Stables
	Lambourn at Shaw, West Berkshire Golf Club
	Thames at Kingston, Clean Linen Services Ltd
	Thames at Kingston, Burhill Golf and Leisure Ltd
	Thames at Kingston, Moreton C Cullimore (Gravels) Ltd
	Thames at Kingston, Air Products Chemicals (Teeside) Ltd
	Wey at Weybridge, Milford Golf Club
	Thames at Kingston, Worplesdon Golf Club
	Thames at Kingston, Farley Farms
	Thames at Kingston, Berkshire Golf Club Ltd
	Thames at Kingston, Burhill Estates Co Ltd
	Thames at Kingston, Hall Hunter Partnership
19 February 2012	Thame at Wheatley, The Woodperry Trust
	Ewelme Stream and Ewelme, M.C. Edwards
	Dun at Hungerford, The Country Food and Dining Company Ltd
	Lambourn at Shaw, Sandtrend Ltd
	Lambourn at Shaw, Kingwood House Stables
	Lambourn at Shaw, West Berkshire Golf Club
	Wey at Weybridge, Milford Golf Club
	Groundwater level at Hambledon, Godalming Angling Society
	Groundwater level at Hambledon, West Surrey Golf Club Co Ltd
26 February 2012	Ray at Islip, RSPB
	Ray at Islip, Topbreed Ltd
	Ock at Abingdon, Frilford Heath Golf Club Ltd
	Ock at Abingdon, Frilford Heath Golf Club Ltd
	Thame at Wheatley, The Woodperry Trust
	Ewelme Stream and Ewelme, M.C. Edwards

Dun at Hungerford, The Country Food and Dining Company Ltd Lambourn at Shaw, Sandtrend Ltd
Lambourn at Shaw, Kingwood House Stables
Lambourn at Shaw, West Berkshire Golf Club
Thames at Kingston, Notcutts Garden Centre
Thames at Kingston, Clean Linen Services Ltd
Thames at Kingston, Burhill Golf and Leisure Ltd
Thames at Kingston, Moreton C Cullimore (Gravels) Ltd
Thames at Kingston, Air Products Chemicals (Teeside) Ltd
Wey at Weybridge, Milford Golf Club
Thames at Kingston, Worplesdon Golf Club
Loddon at Twyford, Farley Farms
Thames at Kingston, Farley Farms
Thames at Kingston, Berkshire Golf Club Ltd
Thames at Kingston, Burhill Estates Co Ltd
Thames at Kingston, Hall Hunter Partnership
Groundwater level at Hambledon, Godalming Angling Society

Glossary

Term	Definition
Aquifer	A geological formation able to store and transmit water.
Areal average rainfall	The estimated average depth of rainfall over a defined area. Expressed in depth of water (mm).
Effective rainfall	The rainfall available to percolate into the soil or produce river flow. Expressed in depth of water (mm).
Groundwater	The water found in an aquifer
Recharge	The process of increasing the water stored in the saturated zone of an aquifer. Expressed in depth of water (mm).
Reservoir live capacity	The reservoir capacity normally usable for storage to meet established reservoir operating requirements. It is the total capacity less that not available because of operating agreements or physical restrictions. Only under abnormal conditions, such as a severe water shortage might this additional water be extracted.
Soil moisture deficit (SMD)	The difference between the amount of water actually in the soil and the amount of water that the soil can hold. Expressed in depth of water (mm).
Categories	
Exceptionally high	Value likely to fall within this band 5\% of the time
Notably high	Value likely to fall within this band 8\% of the time
Above normal	Value likely to fall within this band 15\% of the time
Normal	Value likely to fall within this band 44\% of the time
Below normal	Value likely to fall within this band 15\% of the time
Notably low	Value likely to fall within this band 8\% of the time
Exceptionally low	Value likely to fall within this band 5\% of the time
Units	
cumecs	Cubic metres per second ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)
mAOD	Metres Above Ordnance Datum (mean sea level at Newlyn Cornwall).

